建築物實施耐震能力評估及補強講習會

非線性歷時分析於耐震評估 與消能補強之應用

廖文義

102年6月29日

FEMA 440 (ATC55):改良容量震譜法分析(1)

- 1. 有效阻尼(β_{eff}) 3. 等效週期(T_{eff})
- 2. 評估方法

For $\mu < 4.0$:

$$\beta_{\rm eff} = A \left(\mu - 1\right)^2 + B \left(\mu - 1\right)^3 + \beta_0$$

For $4.0 \le \mu \le 6.5$:

$$\beta_{\rm eff} = C + D(\mu - 1) + \beta_0$$

For $\mu > 6.5$:

$$\beta_{\rm eff} = E \left[\frac{F(\mu - 1) - 1}{F(\mu - 1)^2} \right] \left(\frac{T_{\rm eff}}{T_0} \right)^2 + \beta_0$$

For $\mu < 4.0$: $T_{\rm eff} = \left[G(\mu - 1)^2 + H(\mu - 1)^3 + 1 \right] T_0$ For $4.0 \le \mu \le 6.5$: $T_{\rm eff} = [I + J(\mu - 1) + 1]T_0$ For $\mu > 6.5$: $T_{eff} = \left\{ K \left| \sqrt{\frac{(\mu - 1)}{1 + L(\mu - 2)}} - 1 \right| + 1 \right\} T_0$

Nonlinear Time History Analysis

歷時分析之步驟

- 1. 建立結構模型
- 2. 設定桿件塑鉸(Kinematic hardening, Takeda, Wen,…)
- 3. 選擇地震歷時紀錄
- 4. 檢查結構整體層間變位(如小於2%), 及桿件使用韌性
- 5. 樓板加速度值

Response points at the initial loading move along a trilinear skeleton curve. The unloading stiffness is identical to the elastic stiffness. It shows the tendency of strength increase with the increase in loading. This is used to model the Bauschinger effect of metallic materials. Accordingly, it is cautioned that energy dissipation may be overestimated for concrete. Due to the characteristic of the model, only the positive (+) and negative (-) symmetry is permitted for the strength reduction ratios after yielding.

遲滯模型 (RC柱-M PH)

Takeda Tetra Linear type hysteresis model

Takeda Tetra Linear hysteresis model

- Response points at the initial loading move along a tetralinear skeleton curve.
- If the current displacement or deformation, D, does not exceed D3, the hysteresis rules are identical to the Original Taketa hysteresis.
- If the current displacement or deformation, D, exceeds D3, response points move along the slope K4. For unloading, response points move by the same rules as the Original Taketa hysteresis.

4.11.26 1.16 T. 1 TT. TS			
Add/Modify Inelastic Hinge Properties		Type	Primary Curve
Description :		© Symmetric C Asymmetric	
⊢Yield Strength(Surface) Calculation Method			
O User Input O Auto-Calculation		- Yield Properties	
		Input Method	
Beam-Column Skeleton	None		
Lumped O Fiber	P-M in Strength Calculation	- Input Type	
 Distributed 	P-M-M in Status Determination	Strength - Stiffness Reduction Ratio	
O Spring		C Strength - Yield Displacement	
C Truss		Yield Strength	Deformation Indexes
Haterial			Ductility Factor : OD/D1
Type : 💿 Steel 🔿 RC	Type :	P1 9.77149405 9.77149405 tonf*m	Hinge Status
SRC(filled)	Beam Column C Brace	P2 11 1672157 11 1672157 toof*m	Level (+) (-)
SRC(encased)	Element Position :		1 0.5 0.5
O User Defined			2 1 1
Code : AISC	Section		3 2 2
Name : 2 : stl	▼ Name: 1:b1 ▼	Stiffness Reduction Ratio	4 4
Component Properties			5 8 8
Component Hinge Location	Hysteresis Model	Alpha1 0.5 0.5	Initial Stiffness
Fx Center 👻	Kinematic Hardening Properties	Alpha2 0.05 0.05	● 6EI/L ● 3EI/L ● 2EI/L
Fy I V	Kinematic Hardening Properties		O User 1 tonf*m
Fz I V	Kinematic Hardening Properties		O Elastic Stiffness
	Kinematic Hardening Properties		O Skeleton Curve
✓ My [8] ▼	Kinematic Hardening		
Mz T	Kinematic Hardening Properties		OK Cancel
new buriate properdes		- Steel Beam	
	OK Cancel Apply		

	RC or SRC(enca	ed) Yield Surface Properties	×
Add/Modify Inelastic Hinge Prope	erties	×	Approximation of Yield Surface Shape
Name : cc		C User Input	Type of Input: C User Input Implementation Surface Beta y Beta z Alpha (t) (c) (t) (c) Gamma
Description :		1.7309771286 1.7309771286	1st 1.54324 1.54324 1.54324 1.1 1.4 2nd 1.682 1.5464 1.682 1.5464 1
Yield Strength(Surface) Calculation	Method	on for the 1st P-M Interaction Curve PC(c) PCBy PCBz MCv.max MCz.max	C high years c n nn. years i Betay for the 14 & 2nd garface
O User Input O Auto	p-Calculation	.47586672 194.87741318 194.87741318 9.1844011939 9.1844011938	IMUI PPBU = 1 Betaz formac + PC Mymax Stamp
Type Defi	Interaction Type Skeleton C None	P-M Interaction Curves PY(c) PYBy PYBz MYy,max MYz,max 1.54236156 98.834630334 96.834630331 15.737039509 15.737039509 or plotting P-M curve : Compression(+), Tension(-)	$ \begin{array}{c} \left(\begin{array}{c} \frac{\left V_{\text{B}}^{\text{Desc}} \right }{\left M_{\text{B}}^{\text{Desc}} \right } + \left(\begin{array}{c} 1 \\ \text{Phare}^{\text{Desc}} \right) \right } = 1 \end{array} \right) = 1 \\ \begin{array}{c} PBy = PCB_{2}, PVB_{2} \\ PBz = PCB_{2}, PVB_{2} \\ \hline P$
C Distributed	Fiber (P-M in Strength Calculation P-M-M in Status Determination	2nd P-M Interaction Curves : Ist 2nd 2nd P-M Interaction Curve about y-axis about z-axis PYBy M P-PYBz MYumax PY-PYBz M/Yumax 1 0 0	Interaction Curves and Approximated Yield Surfaces Plot: P-My Legend: Interaction Interact
Material Type : Steel I SRC(filled) SRC(encased) User Defined	RC Type : C Beam Column O Brace Element Position : C I O M O J	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Luve 1at 2nd Approximated Yield Surface 1at 2nd P(Ternion)
Code : ACI Name : 1 : con Component Properties	Section Name : 2 : c1		
Component Hinge Location	Hysteresis Model Kinematic Hardening Properties Kinematic Hardening Properties	RC Columr	1
Fz I 🗸	Kinematic Hardening 🗸 Properties		
	Kinematic Hardening		
	Takeda		
Mz 180	Takeda ▼ Properties		
Yield Surface Properti	ies Fiber Name :		
	OK Cancel Apply		
			NTUT NCREE

Add/Modify lime History Load Cases	×
General Description :	
Analysis Type Analysis Method Time History Type C Linear O Modal Transient Nonlinear Direct Integration Periodic	Iteration Control
End Time : 30 $\stackrel{\bullet}{}$ sec Time Increment : 0.01 $\stackrel{\bullet}{}$ sec Step Number Increment for Output : 2 $\stackrel{\bullet}{}$	Minimum Step Size : 1e-005 s Maximum Iteration : 10
Order in Sequential Loading Image: Subsequent to Image: Load Case ST : DL	Convergence Criteria : Displacement Norm 0.001 Force Norm 0.001
Initial Element Forces(Table) Cumulate D/V/A Results Keep Final Step Loads Constant	Energy Norm
Damping Damping Method : Modal	Boundary Nonlinear Analysis Runge Kutta Method : Fehlberg Method (Stepsize sub-division for Non-convergence Control)
Direct Specification of Modal Mass & Stiffness Proportional Damping Ratio for All M Strain Energy Proportional Element Mass & Stiffness Proportional	C Cash-Karp Method (Adaptive Stepsize Control) Tolerance : 1e-008
Mada Damping Overnoes	OK Canc
Time Integration Parameters Newmark Method : Gamma 0.5 Beta 0.25 © Constant Acceleration © Linear Acceleration © User Input	預加D.L.
Nonlinear Analysis Control Parameters Perform Iteration Iteration Controls	Direct integration 比Model 準確
· · · · · · · · · · · · · · · · · · ·	

3.6.1 輸入地震要求 至少三個與設計反應譜相符之水平地震紀錄,其應能確切反映工址設計地震(或最大考量地震) 之地震規模、斷層距離與震源效應。

針對任一個水平地震紀錄,計算其5%阻尼之反應譜。同時,調整地震紀錄使得位於0.27至1.57 週期範圍內任一點之譜加速度值不得低於設計譜加速度值之90%及於此週期範圍內之平均值不 得低於設計譜加速度值之平均值,其中T為建物基本模態之振動週期。

歷時分析塑鉸狀態

混凝土構架之振動台試驗 與模擬分析

E

使用阻尼器之减震結構設計

Viscous Dampers

Longitudinal Cross Section of A Fluid Damper

The difference of the pressure between each side of the piston head results in the damping force.

The damping constant of the damper can be determined by adjusting the configuration of the orifice of the piston head.

Experimental Validation

2004~2005 三層樓之兩跨乘兩跨 空間鋼筋混凝土構架

Response History

Diagonal-Damper-Brace

Toggle-Brace-Damper

NCREE

Effective Damping Ratio of A Structure with Linear Viscous Dampers

MDOF System with Linear Viscous Dampers

Shaking Table Test

黏性阻尼器之設計Elastic Response
$$\xi_d = \frac{T \sum\limits_{j} C_j \phi_{rj}^2 \cos^2 \theta_j}{4\pi \sum\limits_{i} m_i \phi_i^2}$$
Linear Damper $\xi_d = \frac{T^{2-\alpha} \sum\limits_{j} \lambda C_j \phi_{rj}^{I+\alpha} \cos^{I+\alpha} \theta_j}{(2\pi)^{3-\alpha} D^{I-\alpha} \sum\limits_{i} m_i \phi_i^2}$ Nonlinear Damper**位移設計法** $S_d = \frac{g}{4\pi^2} \frac{S_{aD} I T_1^2}{(1.4\alpha_y F_u)B}$ $D = \Gamma_1 S_d$

Linear Toggle-Brace-DamperNonlinear Toggle-Brace-Damper
$$\xi_d = \frac{T \sum_j C_j \phi_{rj}^2 f_j^2}{4\pi \sum_i m_i \phi_i^2}$$
 $\xi_d = \frac{T^{2-\alpha} \lambda \sum_j C_j (f_j \phi_{rj})^{l+\alpha}}{(2\pi)^{3-\alpha} A^{l-\alpha} \sum_i m_i \phi_i^2}$ $f_U = \frac{u_{D,U}}{u} = \frac{\sin \theta_2}{\cos(\theta_1 + \theta_2)} \cos(\theta_4 - \theta_1) + \sin \theta_4$ (Upper Toggle) $\overset{\# III damper XR, III AIM AIP XRR $f_L = \frac{u_{D,L}}{u} = \frac{\sin \theta_2 \sin(\theta_1 + \theta_3)}{\cos(\theta_1 + \theta_2)}$ (Lower Toggle)$

Viscous Damper 之設計

線性靜力分析程序

- (第一步驟)決定設計阻尼比(如10%)
- inherent damping β (5%) + viscous damping β_{ν} (10%) = effective damping β_{eff} (15%)
- 含消能元件結構構架於最大考量地震下保持彈性 (hysteretic damping = 0)
- (第二步驟) 構架耐震設計
- 以設計地震考慮β_{eff} (15%)阻尼修正因子折減之基底剪力設計
- 設結構保持彈性
- (第三步驟) 地震豎向力分佈
- 考慮整體結構等效阻尼比β_{eff},依據規範將最大考量地震作用基底剪力進行豎向 力分佈
- (第四步驟)垂直持續載重+側向靜力分析求得各層樓之側向層間變位

- (第五步驟)設計阻尼常數C值
- 利用步驟4分析之各層樓層間變位,求各層阻尼器之軸向變形,配合結構基本振 態角頻率ω可求得各層阻尼器之速度值(V)
- 以下式計算均匀分配(uniform distribution)決定各層樓之C值

$$\beta_{V} = \frac{\sum_{j} W_{Vj}}{4\pi W_{k}} \qquad \sum W_{Vj} = \left(\frac{2\pi}{T_{s}}\right)^{\alpha} \sum \lambda C_{j} \left|\Delta_{rj} \cos \theta_{j}\right|^{1+\alpha} \qquad W_{K} = \frac{1}{2} \sum_{i} F_{i} u_{i}$$

- (第六步驟)多次迭代後,決定Damper最大出力與衝程容量
- 速度型阻尼器之力學行為與速度相關,理應進行動力分析程序設計 較為適當
- 建議初步設計完成後,應至少進行線性動力分析作為檢核

加裝Viscous Damper 動力歷時反應分析

補強設計

```
- 輸入地震: 採日本阪神地震加速度記錄
$\phi = [0.457, 0.326, 0.135]
$\alpha = 0.3$
$\phi \Delta \Lambda D = 10 \cm
$\theta = 35°
```

阻尼器特性: F = 24 V^{0.3} F= 阻尼力(KN, 最大出力約140KN) V=速度(mm/s)

阻尼器配置: 3支 斜撐剛度 k = 8.35 kN/mm

Define General Link Properties	Viscoelastic Damper Type Nonlinear Spring
Name Application Type Property Type Description v1 Force Viscoelastic Dam	Add Damper Type Modify Maxwell Model Delete Damper-Brace Assembly Model(Maxwell+Kelvin) Nonlinear Properties Damping (Cd) : 24 Lose Reference Velocity (V0) : 1
Add/Modify General Link Properties	Damping Exponent (s) : 0.3
Name : V1	Bracing Stiffness (kb) : 8.3544309 kN/mm
Application Type : O Element O Force	· · · · · · · · · · · · · · · · · · ·
Property Type : Viscoelastic Damper	Inelastic Hinge Properties
Description :	$\mathbf{f} = \mathbf{c}_{\mathbf{a}} \cdot \operatorname{sign}(\dot{\mathbf{d}}_{\mathbf{a}}) \cdot \left \frac{\dot{\mathbf{d}}_{\mathbf{a}}}{\mathbf{d}_{\mathbf{a}}} \right ^{s} = \mathbf{k}_{\mathbf{a}} \mathbf{d}_{\mathbf{b}}$
Self Weight	
Total Weight : 0 kN Total Mass :	$a = a_d + a_b$
Linear Properties DOF Effective Stiffness Effective Damping 	Nonlinear Properties DoF \checkmark Dx Properties> Dy Properties Dz Properties Rx Properties Ry Properties Rz Properties
Distance Ratio From End I Dy : 0.5 D	Dz : 0.5 OK Cancel
OK Cancel Apply	

屋頂位移歷時

Max. displacement = 10.4 cm, 與設計位移相差不多

NTUT NCREE

NTUT NCREE

加裝Viscous Damper 反應分析

- $F = 240 V^{0.3}$
- F= 阻尼力(KN, 最大出力約1400KN)

V=速度(mm/s)

阻尼器配置:

X向及Y向兩側各8支;共32支 (有效阻尼比可提升約10%)

X(NS)向damper配置圖

Viscous Damper 輸入

單位選擇: KN, mm 阻尼器本身勁度

dentification	
Property Name	d-240
Direction	U1
Туре	Damper
NonLinear	Yes
Properties Used For Linear Analysis Cases	
Effecti∨e Stiffness	0.
Effecti∨e Damping	0.
Properties Used For Nonlinear Analysis Cases Stiffness Damping Coefficient Damping Exponent 0.3	

加裝Viscous Damper 前後加速度反應比較

NCREE

Ε

本報告感謝黃震興教授 及國家地震工程研究中 心提供之寶貴資料

NTU

